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ABSTRACT

A reaction of 2-hydroxy-2-methylbutan-3-one with sodium hydride in the presence or absence of ethyl formate after acid workup gave the
spirocyclic ether 3.

The phenolic ketone ascofuranone 41 is an antifungal
agent isolated from the fungusAscochyta visiae (Figure 1).

In our approach to the synthesis of ascofuranone 4 we
required the vinylogous ester 5 as a starting material. A
survey of the literature revealed that Margaretha et al.2 in
1971 had reported the preparation of furanone 5 using a
base mediated condensation of 2-methyl-2-hydroxy-3-
butanone 1 with ethyl formate 2 (Scheme 1).
Smith3 and his co-workers in 1981 reported that

they were unable to repeat this reaction, and we have

also failed to repeat the results reported by Margar-
etha et al.2 Careful analysis of the reaction reported
by Margaretha et al.2 which was repeated using a
range of different conditions indicated a different
reaction pathway to that reported, which led to the
formation of the tricyclic ether 3. When the reaction
was carried out in the absence of ethyl formate
using the conditions outlined in Margaretha’s paper,
the tricyclic ether 3 was the only product isolated
(Scheme 2).
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The reaction outlined in Scheme 2 was performed
using different bases (LDA and tBuOK) followed by a
simple acid workup in the presence or absence of
copper II sulfate; the crystalline tricyclic ether 3 was
again isolated in good yield.

The acid and base catalyzed reactions of biacetyl
have been published, and Hudec et al.4 have shown
that the acid catalyzed trimerization of biacetyl 7
results in the formation of the ketol 11 together with
other interesting dimers and trimers of biacetyl
(Scheme 3).

Treatment of 2-hydroxy-2-methylbutan-3-one 1 with
sodiumhydride in ether, followedbyworkupwith aqueous
ammonium chloride, gave a crystalline product. This was
shown byNMR spectroscopy andX-ray analysis to be the
aldol dimer 6 which is consistent with literature reported
on similar systems5 (Scheme 4).

These data indicate that the starting material 1 reacts
with itself under base catalyzed conditions much faster
than with ethyl formate 2. We have shown that when the
dimer 6 is exposed to aqueous ethereal hydrochloric acid,
the spirocyclic ether 3 is formed in 30% yield (Scheme 5).6

The formation of 3 could result from the series of
condensations outlined in Scheme 6.
Dehydration of 7 will furnish the enone 8 which in turn

will undergo an acid catalyzed aldol condensationwith the
starting material 1 (Scheme 6).
An acid catalyzed reaction of the enone 8 with the ketol 1

will give the tetraol10whichwill undergo lossofwater to form
the diene 11. Acid mediated intramolecular Michael addition
will give the dihydrofuran 12. The intermediate 12 will react
again with the ketol 1 in acid to give the enone 14 (Scheme 7).
The enone 14 could undergo a further acid catalyzed

intramolecular Michael addition to give the spirocycle 15
which will ring close to afford the spirocycle 16. The
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desired enone has now been prepared by the reliable
procedures of Hiyama et al.7 and Williams et al.8

The observed yield of 3 was higher (30%) when the
dimer 6 was used as the starting material. This gives

credence to the mechanistic pathway outlined in
Scheme 8.9 We will attempt to distinguish between
the mechanisms outlined in Schemes 6, 7, and 8 using
O18 labeled water.
We are currently investigating the theory of this inter-

esting observation using a DFT approach.10 These results
will be published in full at a later stage.
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Note Added after ASAP Publication. The structure of
compound 1 was corrected in the Abstract graphic,
Scheme 2, and Scheme 4; the correct version reposted
July 1, 2011.
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